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Abstract. Over the years, functionalization of zeolite is gaining popularity among researchers to 
further modify the properties of the zeolite for wide applications. The procedure of 
functionalization is crucial to ensure that the framework and structure of the zeolite would not 
be destroyed by the functionalization process. In this work, zeolite AlPO-18 was synthesized via 
hydrothermal synthesis method and functionalized by (3-Aminopropyl) triethoxysilane 
(APTES). The effect of the APTES functionalization on zeolite AlPO-18 was investigated in this 
work. Both unfunctionalized and silane-functionalized zeolite AlPO-18 were characterized using 
Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and 
Thermogravimetric analysis (TGA) for their properties. The morphology and the composition of 
the elements present in zeolite AlPO-18 and zeolite NH2-AlPO-18 were examined using Field 
Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive spectroscopy (EDX) 
respectively. The XRD pattern of NH2-AlPO-18 was similar to that of zeolite AlPO-18, however, 
the intensity of the peaks was lower compared to zeolite AlPO-18. Based on the FTIR spectra, 
the presence of N-H stretching and bending vibration band of aminosilane were observed in the 
NH2-AlPO-18 sample. According to FESEM images, the morphology of NH2-AlPO-18 was 
comparable to that of zeolite AlPO-18 even after functionalization, proving that functionalization 
of aminosilane on zeolite does not affect on the zeolite structure. Besides that, EDX proves the 
presence of 3.02 % of element N in the NH2-AlPO-18 sample which is absent in the zeolite 
AlPO-18 sample. All of the characterizations evinced the presence of aminosilane, APTES in 
the NH2-AlPO-18 sample. 

1.  Introduction 
Zeolites are crystalline aluminosilicates with a well-defined pore framework made from interlinked 
tetrahedra of SiO4 and AlO4 [1]. Currently, there are more than 200 types of zeolites have been 
documented, such as zeolite T, SAPO-34, DDR, SSZ-13, Si-CHA, and AlPO-18 [2]. Zeolites can be 
differentiated based on their crystal structure and framework. It exhibits a well-defined and uniform 
pore size with a large surface area and high porosity. Zeolites can be categorized based on the pore size 
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such as small pore (6-, 8- and 9- membered ring), medium pore (10- membered ring), and large pore 
(12- membered ring) [3]. Zeolites have been used in various industrial applications such as adsorption, 
catalysis, and gas separations due to their intrinsic characteristics such as high chemical, thermal and 
mechanical stabilities [3].   

Zeolite AlPO-18 is a type of zeolite that is gaining favor among researchers because of its small pore 
structure. Zeolite AlPO-18 is a type of zeolite that is made up of aluminum, phosphorus, and oxygen 
and consists of 3D structured pores possessing 8-membered rings with a pore size of 3.8 Å. The 
framework density of AlPO-18 of 15.1 T/nm3 is the lowest among the aluminophosphate family. Zeolite 
AlPO-18 also has a low hydrophilicity nature. The low framework density, as well as the low 
hydrophilicity properties, are the predominant feature of AlPO [4]. It can be synthesized at a moderate 
synthesis temperature and a short synthesis duration. Zeolite AlPO-18 has been researched for 
applications including gas separation. It is remained an interest among researchers to explore approaches 
in modifying or improving the properties of zeolite AlPO-18 to be suitably applied at different 
applications. 

Functionalization of zeolites using different types of silane coupling agents is among the effective 
technique used to modify the zeolite properties for wide applications [5–9]. The most commonly used 
silane coupling agents are (γ-aminopropyl)-triethoxysilane (APTES), 3-
aminopropylmethyldiethoxysilane (APMDES) and (γ-aminopropyl)-diethoxymethylsilane (APDEMS) 
[10-15]. It contains two types of reactive functional groups including organic and inorganic groups. R – 
(CH2)n – Si – X4-n is the typical structure of silane coupling agents, where R represents the organo-
functional group (amine, methacryloxy or, epoxy) and X represents the hydrolysable group (methoxy, 
ethoxy, or acetoxy) [16, 17]. During the functionalization process, the hydroxyl group on the inorganic 
filler surface reacts with the silane [18, 19]. 

In the present work, APTES has been chosen to be used as the silane coupling agent as it has been 
extensively used for a wide range of applications and it could also be considered as one of the less 
expensive silane coupling agents compared to the others [20–28]. APTES consists of an amine group 
(NH2) and three ethoxy groups that can be adhered to the zeolite surface [22, 29]. Figure 1 depicts the 
schematic illustration for zeolite AlPO-18 functionalization using an APTES silane coupling agent. The 
novelty of the work is the functionalization of zeolite AlPO-18 using APTES and investigating the effect 
of the functionalization on the zeolite. Both unfunctionalized and silane-functionalized zeolite AlPO-18 
were characterized using XRD, FT-IR, TGA, and FESEM. To date, there are no research works reported 
on the functionalization of zeolite AlPO-18 by using APTES.  

 
Figure 1. Schematic illustration for aminosilane functionalization of zeolite AlPO-18. 

2.  Materials and experimental procedures 

2.1.  Materials 
Aluminium isopropoxide (98 %, Sigma Aldrich), tetramethylammonium hydroxide (TEAOH) (35 % in 
water, Sigma Aldrich), phosphoric acid (H3PO4) (85 wt % aqueous solution, Sigma Aldrich), and 
deionized water (DI water) were used for zeolite AlPO-18 synthesis. The silane coupling agent, (3-
aminopropyl)-triethoxysilane (APTES) (99 %, Sigma Aldrich) was used to modify zeolite. Toluene (> 
99.9 %) and ethanol (> 99.9 %) were supplied by Merck Co. All the chemicals were used as received. 
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2.2.  Synthesis of zeolite AlPO-18 
Zeolite AlPO-18 was synthesized via hydrothermal synthesis method by following the literature 
reported [30, 31]. A precursor solution with a molar composition of 1.0 Al2O3: 3.16 P2O5: 6.32 TEAOH: 
186 H2O was prepared.  Aluminium isopropoxide, TEAOH, and DI water were mixed and stirred for an 
hour at room temperature to form a homogeneous mixture. Phosphoric acid was added dropwise into 
the stirring solution. The resulting precursor solution was stirred again for 2 hours before heated 
hydrothermally at 150°C for 20 hours. The synthesized particles were centrifuged at 6000 rpm for 10 
minutes to collect the seeds and washed with DI water. The resulting crystal was dried at 50 °C for 
overnight. 

2.3.  Functionalization of zeolite AlPO-18 
The synthesized zeolite AlPO-18 powder was dried overnight at 50 °C before functionalization. For 
functionalization, 2 g of zeolite AlPO-18 powder was uniformly dispersed into 50 mL of toluene.  Then, 
4 mL of APTES was added dropwise to the resultant mixture and refluxed at 110 °C for 4 hours. After 
the reflux process, the mixture was filtered and rinsed with toluene and ethanol absolute in order to 
remove the unreacted APTES. The washed particles were dried at 50 °C overnight. AlPO-18 that was 
functionalized by the silane group was denoted as NH2-AlPO-18 in the current project.  

2.4.  Characterization of zeolite AlPO-18 and NH2-AlPO-18 
XRD (X’Pert3 Powder & Empyrean, PANalytical) was used to study the crystallinity of zeolite AlPO-
18 and NH2-AlPO-18. The analysis was carried out at an accelerating voltage of 40 kV and current of 
40 mA and by using Cu Kα radiation at 2θ in the range of 5o - 45o with a step size of 0.05o. Fourier 
Transform Infrared-Attenuated Total Reflection, FTIR-ATR (Perkin Elmer, Frontier) was used to 
identify the functional groups and chemical bondings presence in the zeolite AlPO-18 and NH2-AlPO-
18. The analysis was carried out with a wavelength of 4000 cm-1 to 400 cm-1. Thermogravimetric 
Analysis, TGA (Perkin Elmer, STA 6000) was used to study the thermal stability of zeolite AlPO-18 
and NH2-AlPO-18 based on the weight loss of the sample due to change in temperature over time. The 
samples were heated from 30 °C to 800 °C at a constant heating rate of 10 oC/min under N2 atmosphere. 
Field Emission Scanning Electron Microscopy, FESEM (Zeiss Supra 55VP) was used to study the 
morphology of the zeolite AlPO-18 and NH2-AlPO-18. Energy-Dispersive spectroscopy (EDX) was 
used to identify the elemental compositions of zeolite AlPO-18 and NH2-AlPO-18. 

3.  Results and discussions 

3.1.  Crystallinity analysis of zeolite AlPO-18 and NH2-AlPO-18 
The XRD pattern of the calcined zeolite AlPO-18 and NH2-AlPO-18 are illustrated in figure 2. From 
figure 2(a), it can be observed that the XRD pattern display the peaks at two theta of 9.6°, 12.8°, 16.8°, 
21°, 23.6°, 26.2°, and 32.0°. All the XRD peaks of the synthesized zeolite AlPO-18 were similar to the 
XRD patterns reported in the literature previously [32–35]. The results obtained prove that zeolite AlPO-
18 was successfully synthesized. According to Carreon et al. [35], the XRD pattern exhibit broad and 
less intense peaks due to the presence of amorphous regions and/or there is a high degree of structural 
disorder in the synthesized zeolite AlPO-18 framework.  

From figure 2(b), it can be seen that the XRD pattern of NH2-AlPO-18 was almost similar to the 
zeolite AlPO-18 peaks. This implies the zeolite structure was not affected by the functionalization of 
aminosilane on the zeolite surface. Despite that, the intensity of NH2-AlPO-18 peak was lower compared 
to the zeolite AlPO-18 patterns. This could be due to the pore filling effect, where the pore surface of 
zeolite AlPO-18 is probably covered by APTES groups. Thus, it affects the crystallinity of the sample 
by causing a slight decrement in the peak crystallinity [36, 37]. 
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Figure 2. XRD patterns of (a) zeolite AlPO-18 and (b) NH2-AlPO-18. 

3.2.  Spectroscopic analysis of zeolite AlPO-18 and NH2-AlPO-18 
Figure 3 and figure 4 shows the FTIR spectra of calcined zeolite AlPO-18 and NH2-AlPO-18 in the 
region of 4000-400 cm-1. FTIR was used to identify the functional group and type of bonding present in 
zeolite AlPO-18 and zeolite NH2-AlPO-18. From figure 3(a), it can be seen that the FTIR spectra 
exhibits the bands around 3500 cm-1, 1640 cm-1, 1100 cm-1, 600 cm-1 and 500 cm-1. All these bands are 
the typical zeolite AlPO-18 peaks that are in good agreement with the literature reported previously [34, 
38, 39].               

The broad absorption band around 3800-3200 cm-1 was attributed to H- bonded Al-OH and P-OH 
groups [34, 40–42]. Besides that, the band around 1700-1600 cm-1 attributed to the interlayer bending 
vibration of physically adsorbed water molecules [43–45]. P-O stretching and bending were ascribed to 
the bands observed in the region of 1200-1000 cm-1 and about 500 cm-1, respectively [43, 46]. The 
presence of double 8-rings framework in the zeolite AlPO-18 was linked to a small intensity band 
formed around 650 cm-1 [42, 47, 48].  

From figure 3(b) and figure 4(b), it can be seen that the FTIR spectra of NH2-AlPO-18 was almost 
similar to the zeolite AlPO-18 spectra with a few additional bands around 1500 ~ 1300 cm-1 and 1560 
cm-1. Compared to zeolite AlPO-18, the zeolite NH2 - AlPO-18 showed a broader band at the frequency 
of 3800-3200 cm-1, where the band assigned to N-H stretching of a primary amine overlaps with the O-
H stretching of hydroxyl group, indicating the presence of aminosilane in the sample [15, 49]. Besides 
that, Si-CH2 and Si-CH3 stretching vibrations of the aminosilane were also apparent around 1500-1300 
cm-1 in NH2-AlPO-18 [12, 40, 50]. Moreover, the presence of an absorption peak at 1560 cm-1, which 
indicates N-H bending of the amine, was also absent in zeolite AlPO-18 [15].  

The type of bonding represented by each of the peak presence in zeolite AlPO-18 and NH2-AlPO-18 
spectra were summarised in table 1. 
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Figure 3. FT-IR spectra of (a) zeolite AlPO-18 and (b) NH2-AlPO-18. 

 

 
Figure 4. FT-IR spectra of (a) zeolite AlPO-18 and (b) NH2-AlPO-18 in the range 2000-1200 cm-1. 

Table 1. Type of bonding shown in the FTIR spectra of zeolite AlPO-18 and NH2-AlPO-18. 

 
              #Attributed to silane groups 
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3.3.  Thermal analysis of zeolite AlPO-18 and NH2-AlPO-18 
Figure 5 illustrates the TGA diagram of zeolite AlPO-18 and NH2-AlPO-18. TGA profile shows the 
percentage of weight loss of the zeolite AlPO-18 and NH2-AlPO-18 as a function of time.  

From the figure 5, it can be observed that zeolite AlPO-18 exhibits a single-stage decomposition 
process in the temperature range of 30-200 oC. Whereas, NH2-AlPO-18 shows a two-stage 
decomposition at the temperature ranged from 30-200 oC and 200-800 oC. In figure 5(a), the TGA profile 
of zeolite AlPO-18 shows a significant weight loss of 24.72% below 200 oC, which was almost similar 
to the TGA profile reported in the literature [51, 52]. This weight loss was ascribed to the removal of 
physiosorbed water molecules within the zeolite pores [51, 53, 54]. After 200 oC, there is no obvious 
mass variation of zeolite AlPO-18 up to 800 oC, which clarifies that zeolite AlPO-18 has good thermal 
stability. 

The TGA profile of NH2-AlPO-18 in figure 5(b) illustrates the first-stage decomposition with a 
weight loss of 19.52% at the temperature range of 30-200 oC. The thermal decomposition rate of NH2-
AlPO-18 was lower compared to zeolite AlPO-18. This justifies the attachment of APTES silane groups 
on the hydroxyl groups (-OH) of zeolite AlPO-18 during the grafting process [55–57]. Thus, it can be 
concluded that the small weight loss in NH2-AlPO-18 is because of less -OH group presence in the NH2-
AlPO-18 sample. The second-stage decomposition of NH2-AlPO-18 with a weight loss of 3.94 % occurs 
at the temperature range 200-800 oC. This weight loss was attributed to gradual organic volatilization-
decomposition of propyl chain in APTES molecule [22, 58–61]. The thermal properties of zeolite AlPO-
18 and NH2-AlPO-18 are summarized in table 2. 

 
Figure 5. TGA diagram of (a) zeolite AlPO-18 and (b) NH2-AlPO-18. 
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Table 2. Weight loss of zeolite AlPO-18 and NH2-AlPO-18 at different temperatures. 

 

3.4.  Morphological analysis of zeolite AlPO-18 and NH2-AlPO-18 
Figure 6(a) and (b) shows the FESEM images of zeolite AlPO-18 and NH2-AlPO-18 at a magnification 
of 20kX respectively. FESEM was used to examine the morphology of the zeolite AlPO-18 and NH2-
AlPO-18. 

The FESEM images in figure 6(a) show a thin elongated plate-like structure of zeolite AlPO-18. The 
morphology obtained is the typical zeolite AlPO-18 structure that looks similar to the literature reported 
previously [30, 51]. However, the morphology of the samples displays particle aggregates. Besides that, 
from figure 6(b), it can be observed that the morphology of NH2-AlPO-18 was similar to that of zeolite 
AlPO-18 even after functionalization on the surface of zeolite AlPO-18. This shows that the 
functionalization of aminosilane on the zeolite surface had no effect on the zeolite structure.  

Moreover, EDX spectroscopy was used to identify the composition of the element presence in zeolite 
AlPO-18 and NH2-AlPO-18. To ensure the consistency of the composition, five trials of the analysis 
were carried out on the samples. The elemental composition of the samples is summarized in table 3. 
Aluminium (Al), Phosphorus (P), and Oxygen (O) are the main elements of zeolite AlPO-18 whereas 
Nitrogen (N) is the main element in APTES. Thus, the presence of N in the EDX of NH2-AlPO-18 
sample proves the presence of APTES in the sample. 

 
Figure 6. FESEM images of (a) zeolite AlPO-18 and (b) NH2-AlPO-18. 

Table 3. EDX of zeolite AlPO-18 and NH2-AlPO-18. 
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4.  Conclusion 
In the current project, the effect of aminosilane functionalization on zeolite AlPO-18 was investigated.  
The XRD pattern of NH2-AlPO-18 was comparable to that of zeolite AlPO-18, although the peak 
intensity was lower than that of zeolite AlPO-18. The existence of N-H stretching and bending vibration 
bands of aminosilane was observed in the FTIR spectra of NH2-AlPO-18 sample. According to FESEM 
analysis, even after functionalization, the morphology of NH2-AlPO-18 was similar to that of zeolite 
AlPO-18, demonstrating that aminosilane functionalization has no effect on zeolite structure. 
Furthermore, EDX confirms the existence of 3.02 percent element N in the NH2-AlPO-18 sample. All 
of the characterizations revealed the presence of APTES in the NH2-AlPO-18 sample. The obtained 
NH2-AlPO-18 can be used widely in industrial applications such as molecular separation, adsorption, 
and catalysis. For future research, the NH2-AlPO-18 can be potentially used as filler for CO2/CH4 gas 
separation. Besides that, the effect of various types of silane coupling agents such as (3-aminopropyl) 
dimethylethoxysilane (APDMES) and (3-aminopropyl) methyldiethoxysilane (APMDES) on the zeolite 
properties can also be investigated. 
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